InfTucker: t-Process based Infinite Tensor Decomposition

نویسندگان

  • Zenglin Xu
  • Feng Yan
  • Yuan Qi
چکیده

Tensor decomposition is a powerful tool for multiway data analysis. Many popular tensor decomposition approaches—such as the Tucker decomposition and CANDECOMP/PARAFAC (CP)—conduct multi-linear factorization. They are insufficient to model (i) complex interactions between data entities, (ii) various data types (e.g. missing data and binary data), and (iii) noisy observations and outliers. To address these issues, we propose a tensor-variate latent t process model, InfTucker , for robust multiway data analysis: it conducts robust Tucker decomposition in an infinite feature space. Unlike classical tensor decomposition models, it handles both continuous and binary data in a probabilistic framework. Unlike previous nonparametric Bayesian models on matrices and tensors, our latent t-process model focuses on multiway analysis and uses nonlinear covariance functions. To efficiently learn InfTucker from data, we develop a novel variational inference technique on tensors. Compared with classical implementation, the new technique reduces both time and space complexities by several orders of magnitude. This technique can be easily adopted in other contexts (e.g. , multitask learning) where we encounter tensor-variate t processes or Gaussian processes. Our experimental results on chemometrics and social network datasets demonstrate that the new InfTucker model achieves significantly higher prediction accuracy than several state-of-art tensor decomposition approaches including High Order Singular Value Decomposition (HOSVD), Weighted CP, and nonnegative tensor decomposition.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DinTucker: Scaling up Gaussian process models on multidimensional arrays with billions of elements

Infinite Tucker Decomposition (InfTucker) and random function prior models, as nonparametric Bayesian models on infinite exchangeable arrays, are more powerful models than widely-used multilinear factorization methods including Tucker and PARAFAC decomposition, (partly) due to their capability of modeling nonlinear relationships between array elements. Despite their great predictive performance...

متن کامل

DinTucker: Scaling Up Gaussian Process Models on Large Multidimensional Arrays

Tensor decomposition methods are effective tools for modelling multidimensional array data (i.e., tensors). Among them, nonparametric Bayesian models, such as Infinite Tucker Decomposition (InfTucker), are more powerful than multilinear factorization approaches, including Tucker and PARAFAC, and usually achieve better predictive performance. However, they are difficult to handle massive data du...

متن کامل

Infinite Tucker Decomposition: Nonparametric Bayesian Models for Multiway Data Analysis

Tensor decomposition is a powerful computational tool for multiway data analysis. Many popular tensor decomposition approaches—such as the Tucker decomposition and CANDECOMP/PARAFAC (CP)—amount to multi-linear factorization. They are insufficient to model (i) complex interactions between data entities, (ii) various data types (e.g.missing data and binary data), and (iii) noisy observations and ...

متن کامل

A simple form of MT impedance tensor analysis to simplify its decomposition to remove the effects of near surface small-scale 3-D conductivity structures

Magnetotelluric (MT) is a natural electromagnetic (EM) technique which is used for geothermal, petroleum, geotechnical, groundwater and mineral exploration. MT is also routinely used for mapping of deep subsurface structures. In this method, the measured regional complex impedance tensor (Z) is substantially distorted by any topographical feature or small-scale near-surface, three-dimensional (...

متن کامل

Cohomology and Decomposition of Tensor Product Representations of SL(2,R)

We analyze the decomposition of tensor products between infinite dimensional (unitary) and finite-dimensional (non-unitary) representations of SL(2,R). Using classical results on indefinite inner product spaces, we derive explicit decomposition formulae, true modulo a natural cohomological reduction, for the tensor products. PACS: 02.20.-a, 03.65Fd, 11-30.-j

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1108.6296  شماره 

صفحات  -

تاریخ انتشار 2011